LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FOURTH SEMESTER - APRIL 2015

MT 4503 - ALGEBRAIC STURUCTURE - I

Date: 16/04/2015 Dept. No. Max.: 100 Marks
Time: 09:00-12:00

PART - A

(Answer ALL questions) $(10 \times 2 = 20)$

- 1. Define one to one and onto mapping.
- 2. Give an example of a finite group.
- 3. Show that any subgroup of an abelian group is normal.
- 4. Define a quotient group.
- 5. When do you say that two groups are isomorphic?
- 6. Express the permutation (1,3,4) (1,2,3,5) as product of disjoint cycles.
- 7. Give an example of an integral domain which is not a field.
- 8. Define an ideal of a ring.
- 9. When do you say that two elements of a commutative ring are associates?
- 10. What are Gaussian integers?

PART - B

(Answer any FIVE questions)

 $(5 \times 8 = 40)$

- 11. If H is a non-empty finite subset of a group G and H is closed under the operation of G, show that H is a subgroup of G.
- 12. Show that union of two subgroups is a subgroup of G if and only if one is contained in the other.
- 13. Show that every group of prime order is cyclic.
- 14. If G is a group, show that set of all automorphisms on G, A(G) is also a group.
- 15. Show that every permutation can be expressed as product of disjoint cycles and this representation is unique up to the order of the factors.
- 16. Show that every finite integral domain is a field.
- 17. Let R be a commutative ring with unity and P is an ideal of R. Show that P is a prime ideal of R if and only if R/P is an integral domain.
- 18. Let R be a Euclidean ring. Show that any two elements a and b in R have a greatest common divisor d which can be expressed as $\lambda a + \mu b$ for some λ , μ in R.

PART - C

(Answer any TWO questions)

 $(2 \times 20 = 40)$

- 19. (a) If G is a group in which $(ab)^k = a^k b^k$ for three consecutive integers k and for all a,b in G, show that G is abelian.
 - (b) If H and K are finite subgroups of a group G, show that $o(HK) = \frac{\sigma(H)\sigma(K)}{\sigma(H\cap K)}$. (8+12)
- 20. (a) If N is a normal subgroup of a group G, show that G/N is also a group.
 - (b)State and prove the fundamental theorem of group homomorphism.
- 21. (a) Let G be a group. Show that the set of all inner automorphisms of G , I(G), is a normal subgroup of A(G) and I(G) \approx G/Z(G) where Z(G) is the centre of G.
 - (b) Let R be a commutative ring with unity and M is an ideal of R. Show that M is a maximal ideal of R if and only if R/M is a field.
- 22. (a) Show that every Euclidean ring is a principal ideal domain.
 - (b) Show that Z(i) is a Euclidean ring.

(8+12)

\$\$\$\$\$\$\$